If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-62x+160=0
a = 5; b = -62; c = +160;
Δ = b2-4ac
Δ = -622-4·5·160
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-62)-2\sqrt{161}}{2*5}=\frac{62-2\sqrt{161}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-62)+2\sqrt{161}}{2*5}=\frac{62+2\sqrt{161}}{10} $
| -5=7n-5+6n | | 25x24= | | b)12(3푔−2)=푔2 | | 365-t=317 | | 13=1+6p-6 | | X+2/x=10 | | 7v+8-6=-19 | | -2b+3b=1 | | 2-7v-6=17 | | 3x²+14x+4=0 | | 6x-6=9x-3* | | 2p/6=12 | | 10x+x=325 | | x+316=180 | | 325x=10 | | 10h=325 | | -2(3x-4)=-20 | | -7x-2(-4x+5)=22 | | y.7=42 | | 3/4(6x+1)-2x=1/4(x-1) | | 1x+136=180 | | 10^-9x8=0 | | 3x1/3x+4=x-2 | | 8(x+5)-7(x-8)=55 | | 3x(1/3x+4=x-2) | | 3-x10=5x-8 | | 7(3x+4=) | | |p-7.5|=0.3 | | 2x+5+3x+55=180 | | -(-4m-12)=4m-3+15 | | (-2x+5)(5x+1)=0 | | 5x-15+9x+11=180 |